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Abstract. Glaucoma, Pathological Myopia (PM), and Age-related Mac-
ular Degeneration (AMD) are three leading ocular diseases in the world.
In this paper, we proposed a multiple ocular diseases diagnosis approach
for above three diseases, with Entropic Graph regularized Probabilistic
Multi-label learning (EGPM). The proposed EGPM exploits the corre-
lations among these three diseases, and simultaneously classifying them
for a given fundus image. The EGPM scheme contains two concatenating
parts: 1) efficient graph construction based on k-Nearest-Neighbor (k-
NN) search; 2) entropic multi-label learning based on Kullback-Leibler
divergence. In addition, to capture the characteristics of these three lead-
ing ocular diseases, we explore the extractions of various effective low-
level features, including Global Features, Grid-based Features, and Bag
of Visual Words. Extensive experiments are conducted to validate the
proposed EGPM framework on SiMES dataset. The results show area
under curve (AUC) of the receiver operating characteristic curve in mul-
tiple ocular diseases detection are much better than the state-of-the-art
algorithms.

1 Introduction

Vision is one of the most important senses which greatly influences an individuals
quality of life. Studies have shown that many of the leading causes of vision
impairment and blindness worldwide are irreversible and cannot be cured [1].
Glaucoma, Pathological Myopia (PM), and Age-related Macular Degeneration
(AMD) are three leading ocular diseases. Diagnosing Glaucoma, PM and AMD
is one of the most challenging problems in medical imaging.

Glaucoma is a chronic eye disease that leads to vision loss, in which the optic
nerve is progressively damaged. It is one of the common causes of blindness, and
is predicted to affect around 80 million people by 2020 [1]. Glaucoma diagnosis
is typically based on the medical history, intraocular pressure, and visual field
loss tests together with a manual assessment of the Optic Disc (OD) through
ophthalmoscopy. OD or optic nerve head is the location where ganglion cell
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axons exit the eye to form the optic nerve, through which visual information of
the photo-receptors is transmitted to the brain [2].

As one of the leading causes of blindness worldwide, Pathological Myopia (P-
M) is a type of severe and progressive nearsightedness characterized by changes
in the fundus of the eye, due to posterior staphyloma and deficient corrected
acuity. PM is primarily a genetic condition [3] [4]. It is accompanied by degen-
erative changes in the retina, which if left untreated can lead to irrecoverable
vision loss. The accurate detection of PM will enable timely intervention and fa-
cilitate better disease management to slow down the progression of the disease.
PM has been detected mostly from fundus image where retinal degeneration is
observed in the form of Peripapillary Atrophy (PPA). PPA is the thinning of
retinal layers around the optic nerve and is characterized by a pigmented ring
like structure around the optic disc.

Age-related Macular Degeneration (AMD) causes vision loss at the central
region and blur and distortion at the peripheral region. Depending on the pres-
ence of exudates, AMD is classified into dry AMD (non-exudative AMD) and wet
AMD (exudative AMD). Dry AMD results from atrophy of the retinal pigment
epithelial layer below the retina. It causes vision loss through loss of photore-
ceptors (rods and cones) in the central part of the retina. The major symptom
and also the first clinical indicator of dry AMD is drusen, sub-retinal deposits
formed by retinal waste. Wet AMD causes vision loss due to abnormal blood ves-
sel growth (choroidal neovascularization) in the choriocapillaris, through Bruchs
membrane, ultimately leading to blood and protein leakage below the macula.
Bleeding, leaking, and scarring from these blood vessels eventually cause irre-
versible damage to the photoreceptors and rapid vision loss if left untreated. The
major symptom of wet AMD is exudation [5][6].

For these three leading ocular diseases, there are some correlations among
them. In recent decades, the problem of low vision and blindness in elderly peo-
ple became major and socially significant issue. The number of patients having
age-related macular degeneration (AMD) in association with glaucoma grows
all over the world [8], which attaches medical and social value to this multiple
diseases diagnosis problem. Moreover, in recent study, myopic eyes are less likely
to have AMD and diabetic retinopathy (DR) but more likely to have nuclear
cataract and glaucoma [9]. Inspired by the correlations among Glaucoma, P-
M, and AMD, we propose a entropic graph regularized probabilistic multi-label
learning framework for harmoniously integrating the above correlation infor-
mation, and investigating the problem of learning to simultaneously diagnose
these three leading ocular diseases for a given fundus image. Unlike previous
approaches that detect individual ocular disease independently, our proposed
EGPM scheme encodes the correlation information of different diseases of an
image as a unit label confidence vector, which naturally imposes inter-label con-
straints and manipulates labels interactively. It then utilizes the probabilistic
Kullback-Leibler divergence and Shannon Entropy for problem formulation on
multi-label learning. This kind of disease screening is more oriented to real world
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diagnosis scenario because a patient may have two or three diseases at the same
time.

2 Related Work

Multi-label learning is a hot and promising research direction in computer vision.
In the past, there are several approaches proposed to exploit the multiple labels
learning problem. For example, the work in [14] introduced a unified Correlative
Multi-Label (CML) framework for classifying labels and modeling correlations
between them. Chen et al. [18] solved the multi-label learning problem by uti-
lizing a sylvester equation. However, in the medical imaging analysis, multiple
ocular diseases detection is still an open problem. In this paper, the proposed
scheme exploits the medical problem of simultaneously diagnosing the leading
multiple ocular diseases based on entropic graph regularized probabilistic multi-
label learning.

In the previous work [10], a graph-based semi-supervised learning (SSL)
method was proposed for phone classification task. Unlike previous approaches,
this method modeled the multi-class label confidence vector as a probabilistic
distribution, and utilized the Kullback-Leibler (KL) divergence to gauge the
pairwise discrepancy. The underlying philosophy is that such soft regularization
term will be less vulnerable to noisy annotation or outliers. Here we adopt the
same distance measure, yet in a different scenario (i.e. multiple ocular disease
detection in medical imaging analysis), thus demanding new solution. In the
setting of multi-label annotation in multimedia, the work in [19] proposed the
Kullback-Leibler divergence based multi-label propagation, which encoded the
label information of an image as a label vector and imposes inter-label constraints
and manipulates labels interactively. In this paper, based on Kullback-Leibler
Divergence and Shannon entropy, we propose a graph regularized probabilis-
tic multi-label learning framework for harmoniously integrating the correlation
information of different diseases, and investigating the problem of learning to
simultaneously diagnose these three leading ocular diseases for a given fundus
image.

3 Feature Extraction

Detecting Glaucoma, PM and AMD is one of the most challenging problems
in medical image analysis. In order to effectively capture the characteristics of
these three leading ocular diseases, we explore the extractions of various popular
features adopted in medical imaging and computer vision in this section. We
extract three types of low-level features: Global Features, Grid-based Features,
and Bag of Visual Words.

3.1 Global Features

Color Histogram: The color histogram serves as an effective representation of
the color content of an image. It is defined as the distribution of the number
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Fig. 1. Framework of features extraction. A set of effective and popularly used global
and local features for each fundus image are extracted. Global Features: color his-
togram, color auto-correlogram, edge direction histogram, and wavelet texture; Grid-
based Features: block-wise color moments are extracted; Local Features: bags of visual
words.

of pixels for each quantized bin. We adopt the LAB color space [13] to model
the color image, where L is lightness and A, B are color opponents. As LAB is
a linear color space, we therefore quantize each component of LAB color space
uniformly into four bins. Then the color histogram is defined for each component
as follows:

L(i) =
Zi

N
, i = 1, 2, ..., k, (1)

where Zi is the number of pixels with value i, N is the total number of pixels
in the image, and k is the size of the quantized bins (with k = 4). The resulting
color histogram has a dimension of 64 = 4× 4× 4.

Color Auto-Correlogram: The color auto-correlogram was proposed to
characterize the color distributions and the spatial correlation of pairs of colors
together. The first two dimensions of the three-dimensional histogram are the
colors of any pixel pair and the third dimension is their spatial distance. Let I
represent the entire set of image pixels and Ic(i) represent the subset of pixels
with color c(i), then the color auto-correlogram is defined as [15]:

r
(t)
i,j = Prp1∈Ici

,p2∈I
[p2 ∈ Ic(j) ‖ |p1 − p2| = d], (2)

where i, j ∈ {1, 2, ..., k}, d ∈ 1, 2, ..., l and |p1−p2| is the distance between pixels
p1 and p2. Color auto-correlogram only captures the spatial correlation between
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identical colors and thus reduces the dimension from O(N2d) to O(Nd). We
quantize the HSV color components into 36 bins and set the distance metric
to four odd intervals of d = {1, 3, 5, 7}. Thus the color auto-correlogram has a
dimension of 144 = 36× 4.

Edge Direction Histogram: Edge direction histogram encodes the distri-
bution of the directions of edges. It comprises a total of 73 bins, in which the
first 72 bins are the count of edges with directions quantized at five degrees in-
terval, and the last bin is the count of number of pixels that do not contribute
to an edge. To compensate for different image sizes, we normalize the entries in
histogram as follows [16]:

Ei =

{
E(i)
Ms

, if i ∈ [0, ..., 71]
E(i)
M , if i = 72

(3)

where E(i) is the count of bin i in the edge direction histogram; Ms is the total
number of edge points detected in the sub-block of an image; and M is the total
number of pixels in the sub-block. We use Canny filter to detect edge points and
Sobel operator to calculate the direction by the gradient of each edge point.

Wavelet Texture: The wavelet transform provides a multi-resolution ap-
proach for texture analysis. Essentially wavelet transform decomposes a signal
with a family of basis functions ψmn(x) obtained through translation and dila-
tion of a mother wavelet ψ(x) [21], i.e.,

ψmn(x) = 2
m
2 ψ(2−mx− n), (4)

where m and n are the dilation and translation parameters. A signal f(x) can
be represented as:

f(x) =
∑
m,n

cmnψmn(x). (5)

Wavelet transform performed on image involves recursive filtering and sub-
sampling. At each level, the image is decomposed into four frequency sub-bands,
LL, LH, HL, and HH, where L denotes the low frequency and H denotes the
high frequency. Two major types of wavelet transform often used for texture
analysis are the pyramid-structured wavelet transform (PWT) and the tree-
structured wavelet transform (TWT). The PWT recursively decomposes the LL
band. On the other hand, the TWT decomposes other bands such as LH, HL
or HH for preserving the most important information appears in the middle
frequency channels. After the decomposition, feature vectors can be constructed
using the mean and standard deviation of the energy distribution of each sub-
band at each level. For the three-level de- composition, PWT results in a feature
vector of 24 = 3× 4× 2 components. For TWT, the feature will depend on how
the sub-bands at each level are decomposed. A fixed decomposition tree can be
obtained by sequentially decomposing the LL, LH, and HL bands, thus resulting
in a feature vector of 104 = 52× 2 components.
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3.2 Grid-based Features

Block-wise Color Moments: The first (mean), the second (variance) and
the third order (skew- ness) color moments have been found to be efficient and
effective in representing the color distributions of images. Mathematically, the
first three moments are defined as [7]:

µi =
1

N

N∑
j=1

fij . (6)

σi = (
1

N

N∑
j=1

(fij − µi)
2)1/2. (7)

si = (
1

N

N∑
j=1

(fij − µi)
3)1/3. (8)

where fij is the value of the i-th color component of the image pixel j, and N
is the total number of pixels in the image.

Color moments offer a very compact representation of image content as com-
pared to other color features. For the use of three color moments as described
above, only nine components (three color moments, each with three color compo-
nents) will be used. Due to this compactness, it may not have good discrimination
power. Thus for our dataset, we extract the block-wise color moments over 55
fixed grid partitions, giving rise to a block-wise color moments with a dimension
of 225.

3.3 Bag of Visual Words

The bag of visual words model approach in computer vision, also known as bag-
of-words model [22], is a simplifying representation used in natural language
processing and information retrieval by treating local image features as words.
In natural language processing, a bag-of-words is a sparse vector of occurrence
counts of words; that is, a sparse histogram over the vocabulary. In computer
vision, a bag-of-words is a sparse vector of occurrence counts of a vocabulary of
local image features (codebook), which is a location-indepedent global feature;
however, the properties of local features, such as intensity, rotation, scale and
affine invariants can also be preserved. In this paper, the generation of bag of
words comprises three steps:

– First, apply the difference of Gaussian filter on the gray scale images to
detect a set of key-points and scales respectively.

– Then, compute the Scale Invariant Feature Transform (SIFT) over the local
region defined by the key-point and scale.
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– Finally, perform the vector quantization on SIFT region descriptors to con-
struct the visual vocabulary by exploiting the k-means clustering. Here we
generated 500 clusters, and thus the dimension of the bag of visual words is
500.

4 Graph Regularized Probabilistic Multi-label Learning

Our proposed multi-label learning framework includes two concatenating parts:
1) k-Nearest-Neighbor (k-NN) Search based Graph Construction; 2) Entropic
Multi-label Learning based on Kullback-Leibler Divergence.

4.1 Graph Construction

The first step of the proposed framework is the construction of an directed
weighted graph G =< V, E >, where the cardinality of the node set V is
m = l + u (denote the labeled and unlabeled data respectively), and the edge
set E ⊆ V × V describes the graph topology. Let Vl and Vu be the sets of
labeled and unlabeled vertices respectively. G can be equivalently represented by
a weight matrix W = {wij} ∈ Rm×m. To efficiently handle the large-scale data,
we enforce the constructed graph to be sparse. The weight between two nodes
wij is nonzero only when j ∈ Ni, where Ni denotes the local neighborhood
of the i-th image. The graph construction can thus be decomposed into two
sub-problems: 1) Neighborhood Selection; and 2) Edge Weight Computation.

Neighborhood Selection For the issue of neighborhood selection, there are
two conventional strategies in previous work: ε-ball neighborhood and k-nearest-
neighbor based neighborhood.

For ε-ball neighborhood selection, given a pre-specified distance measure
between two nodes dG(xi, xj) and a threshold ε, any vertex xj that satisfies
dG(xi, xj) ≤ ε will be incorporated in the neighborhood of the vertex xi, result-
ing in nonzero wij . It is easy to observe that the weight matrix of the constructed
graph is symmetric. However, for some vertices beyond a distance from the oth-
ers, there is probably no edge connecting to other vertices.

For k-nearest-neighbor based neighborhood selection, wij is nonzero only
if xj is among the k-nearest neighbors to the i-th datum. Obviously, graphs
constructed in this way may ensure a constant vertex degree, avoiding over-dense
sub-graphs and isolated vertices. In this paper, we employ k-nearest-neighbor
based neighborhood for graph construction.

Edge Weight Computation A proper inter-sample similarity definition is the
core for graph-based label learning. The message transmitted from the neighbor-
ing vertices with higher weights will be much stronger than the others. Generally,
the more similar a sample is to another sample, the stronger the interaction (thus
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larger weight) exists between them. There are two traditional ways to comput-
ing the edge weight: unweighted k-NN similarity and exponentially weighted
similarity.

For unweighted k-NN similarity, the similarity wij between xi and xj is 1
if xj is among the k-NN of xi; otherwise 0. For undirected graph, the weight
matrix is symmetric and therefore wij = wji is enforced.

For exponentially weighted similarity, given all chosen k-NN neighbors, their
weights are determined as below:

wij = exp

(
−dG(xi, xj)

σ2

)
, (9)

where dG(xi, xj) is the ground truth distance and σ is a free parameter to control
the decay rate.

In this paper, we utilized an efficient weight computation method–weighted
linear neighborhood similarity [17]. In this scheme sample xi is assumed to be
linearly reconstructed from its k-NN. The weights are obtained via solving the
following optimization problem:

min
wij

‖ xi −
∑
j∈Ni

wijxj ‖2 . (10)

Typically additional constraints are given to wij . For example, in [17], the con-
straints wij ≥ 0 and

∑
j wij = 1 are imposed. The kind of constraints could help

exploit the correlations of the three ocular diseases.

4.2 Entropic Multi-label Learning based on Kullback-Leibler
Divergence

Let Ml = {xi, ri}li=1 be the set of labeled images, where xi is the feature vector
of the i-th image and ri is a multi-label vector (its entry is set to be 1 if it is
assigned with the corresponding label, otherwise 0). Let Mu = {xi}l+u

i=l+1 be the
set of unlabeled images, and M = {Ml,Mu} is the entire data set. The graph-
based multi-label learning is intrinsically a transductive learning process, which
propagates the labels of Ml to Mu.

For each xi, we define the probability measure pi over the measurable space
(Y,Y). Here Y is the σ-field of measurable subsets of Y and Y ⊂ N (the set
of natural numbers) is the space of classifier outputs. |Y | = 2 yields binary
classification while |Y | > 2 implies multi-label. In this paper, we focus on the
multi-label case. Hereafter, we use pi and ri for the i-th image, both of which
are subject to the multinomial distributions, and pi(y) is the probability that
xi belongs to class y. As mentioned above, {rj , j ∈ Vl} encodes the supervision
information of the labeled data. If it is assigned a unique label by the annotator,
rj becomes the so-called “one-hot” vector (only the corresponding entry is 1, the
rest is 0). In case being associated with multiple labels, rj is represented to be
a probabilistic distribution with multiple non-zero entries.
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We adopt the following criterion to guide the propagation of the supervision
information, which is based on the concepts of Kullback-Leibler divergence [10]
defined on two distributions:

Z1(p) =

l∑
l=1

ZKL

(
ri ‖ pi

)
+ µ

m∑
i=1

ZKL

(
pi ‖

∑
j∈N(i)

wijpj
)
, (11)

and the optimal solution p∗ = argp minZ1(p).
Here ZKL(ri ‖ pi) denotes the KL divergence between ri and pi, whose formal

definition for the discrete case is expressed as ZKL(ri ‖ pi) =
∑

y ri(y) log ri(y)
pi(y)

.

The first term in Z1(p) trigger a heavy penalty if the estimated value pi deviates
from the pre-specified ri. The second term of Z1 stems from the assumption
that pi can be linearly reconstructed from the estimations of its neighbors, thus
penalizing the inconsistency between the pi and its neighborhood estimation. µ
is a free parameter to balance these two terms.

Note that Z1 in Equation (11) is not amenable to alternating optimization.
We further propose a modified version by introducing a new group of variables
{qi} and Shannon entropy H(qi), which is shown as below:

Z2(p, q) =

l∑
l=1

ZKL(ri ‖ qi) + µ

m∑
i=1

ZKL(pi ‖
∑

j∈N (i)

wijqj)

+η

m∑
i=1

ZKL(pi ‖ qi) + ξ

m∑
i=1

H(qi). (12)

In the above, a third measure qi is introduced to decouple the original term
µ
∑m

i=1 ZKL

(
pi ‖

∑
j∈N(i) wijpj

)
. qi can actually be regarded as a relaxed ver-

sion of pi. To enforce consistency between them, the third term
∑m

i=1 ZKL(pi ‖
qi) is incorporated. Here H(q) =

∑
y q(y)logq(y). The Equation (12) could be

solved by utilizing the similar method in [10].

5 Experiments

To evaluate the multiple diseases diagnosis performance of our proposed Graph
Regularized Probabilistic Multi-label Learning (EGPM), we conduct extensive
experiments on the Singapore Malay Eye Study (SiMES) database [12] for de-
tecting the three leading ocular diseases: Glaucoma, Pathological Myopia (PM),
and age-related macular degeneration (AMD). We consider using three different
types of features as well as their combination in the experiments, which gives
us a total of four settings: 1) global features; 2) grid-based features; 3) bag of
words; 4) global features + grid-based features + bag of words. The notation +
indicates a combination of four types of features in the corresponding setting.
We provide quantitative study on SiMES, with an emphasis on the comparison
with six state-of-the-art related methods.
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Table 1. The Baseline Algorithms.

Name Methods

KNN k-Nearest Neighbors [24]
SVM Support Vector Machine [23]
LNP Linear Neighborhood Propagation [17]
SPM State-of-the-art algorithm for PM Detection [11]
SAMD State-of-the-art algorithm for AMD Detection [20]
SGL State-of-the-art algorithm for Glaucoma Detection [2]

5.1 Dataset

SiMES is a population-based study conducted from 2004 to 2007. It examined a
cross-sectional and age stratified sample of 3,280 randomly selected Malays aged
from 40 to 80 years old living in Singapore. For each subject in this database,
personal demographic/clinical data, a retinal fundus image, and a blood sample
(used for genotyping) were collected during the clinic visit, which thus gives us
three informatics domains containing completely different types of data.

Moreover, the detection of three leading ocular diseases (i.e., Glaucoma,
AMD, and PM) have been made by clinicians at the same time. The detec-
tion of different diseases made by clinicians during the visit are used as the gold
standard to evaluate the classification performance of all the methods in this
work. In this work, we select a subset of SiMES for experiments, which contains
2,258 subjects. Among the 2,258 subjects, there are 100 with glaucoma, 122 with
AMD, and 58 with PM. For each disease, the distribution of the subjects who
contracted the disease in the selected dataset is representative of the disease
prevalence in the population.

5.2 Low-level Features

As detailed in Section 2, to facilitate experimentation and comparison of re-
sults, we extract a set of effective and popularly used global and local features
for each image. For global features, four types of features are extracted: 64-
dimensional color histogram [13], 144-dimensional color auto-correlogram [15],
73-dimensional edge direction histogram [16], and 128-dimensional wavelet tex-
ture [21]. For grid-based features, 225-dimensional block-wise color moments are
extracted [7]. For local features, 500-dimensional bags of visual words [22] are
generated.

5.3 Evaluation Criteria

In this work, we utilize the area under the curve (AUC) of receiver operation
characteristic curve (ROC) to evaluate the performance of glaucoma diagnosis.
The ROC is plotted as a curve which shows the tradeoff between sensitivity
TPR (true positive rate) and specificity TNR (true negative rate), defined as
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TPR =
TP

TP + FN
, TNR =

TN

TN + FP
, (13)

where TP and TN are the number of true positives and true negatives, respec-
tively, and FP and FN are the number of false positives and false negatives,
respectively.

Table 2. The AUCs of different algorithms for simultaneously detecting the three lead-
ing ocular diseases (i.e., Glaucoma, PM and AMD) on SiMES dataset. The combined
visual features (global features + grid-based features + bag of words) are utilized in
the experiment. The results of AUC marked in boldface are significantly better than
others.

Methods Glaucoma Pathological Myopia AMD

KNN 74.2 % 86.5 % 72.9%

SVM 76.7 % 89.1% 75.0%

LNP 78.8 % 90.1% 76.6%

SGL 81.0 % - -

SPM - 91.0% -

SAMD - - 77.8%

OurProposed 82.5 % 92.3 % 79.3%

5.4 Baselines and Experimental Setup

In the experiments, we compare our proposed Graph Regularized Multi-label
Learning (EGPM) with six baseline methods (as shown in Table 1): Support
Vector Machine (SVM) [23], k-Nearest Neighbors (KNN) [24], Linear Neigh-
borhood Propagation (LNP) [17], SPM [11], SAMD [20], and SGL [2].Amongst
them, SVM is originally developed to solve binary-class or multi-class classifi-
cation problem. Here we use its multi-class version by adopting the one-vs-one
method. LNP is the state-of-the-art algorithms for semi-supervised learning. It
bases on a linear construction criterion to calculate the edge weights of the
graph, and disseminates the supervision information by a local propagation and
updating process. SPM is the state-of-the-art algorithm for PM detection, which
is a sparse learning based framework to recognize PM in retinal fundus images.
SAMD is the state-of-the-art algorithm for AMD detection, which is an auto-
matic framework for the detection of drusen images for AMD assessment. SGL is
the state-of-the-art algorithm for Glaucoma detection, which is a reconstruction-
based learning technique for glaucoma screening. Since SPM, SAMD and SGL
are the individual ocular disease detection algorithms, we only give the AUCs
of PM, AMD and Glaucoma for SPM, SAMD and SGL in Table 2, respectively.

For KNN, SVM, and LNP, we implement them under the aforementioned
three settings using different feature types as well as their combinations. For
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Table 3. The AUCs of different algorithms under three setting of features on SiMES
dataset for Glaucoma diagnosis. The results of AUC marked in boldface are significantly
better than others.

Methods KNN SVM LNP Our Proposed

Global Features 71.2 % 73.5 % 75.2% 78.7%

Grid based Features 69.1 % 71.2 % 73.0% 76.5%

Bag of Words 68.4 % 70.9% 72.6% 75.0%

Combined Features 74.2 % 76.7% 78.8 % 82.5%

Table 4. The AUCs of different algorithms under three setting of features on SiMES
dataset for AMD diagnosis. The results of AUC marked in boldface are significantly
better than others.

Methods KNN SVM LNP Our Proposed

Global Features 70.2 % 72.5% 73.9 % 76.4%

Grid based Features 69.3 % 71.8 % 72.5% 76.5%

Bag of Words 68.1 % 70.3% 71.6% 73.5%

Combined Features 72.9 % 75.0% 76.6 % 79.3%

each setting, all the methods for the automatic detections of the three leading
ocular diseases (i.e., glaucoma, AMD and PM) are evaluated on SiMES dataset.
All the experiments are implemented with Matlab and tested on a four core
3.4GHz PC with 12GB RAM.

5.5 Experiment Results Analysis

In the experiments, we systematically compare our proposed EGPM with six
baselines (SVM, KNN, LNP, SPM, SAMD, and SGL) on SiMES. Below are the
parameters and the adopted values for each method:

– For SVM algorithm, we adopt the RBF kernel. For its two parameters γ and
C, we set γ = 0.5 and C = 1 in experiments after fine tuning.

– For KNN, there is only one parameter k for tuning, which stands for the
number of nearest neighbors and is trivially set as 500.

– For EGPM, we set the two parameters as µ = 9, η = 4, and ξ = 0.01.
– For SGL, SPM, and SAMD, we use the similar setting as in their papers.

The AUCs of the seven methods for detecting the three leading ocular dis-
eases (i.e., Glaucoma, PM, and AMD) on SiMES dataset are illustrated in Ta-
ble 2. The combined visual features (global features + grid-based features +bag
of words) are utilized in this experiment. For SGL, SPM and SAMD, we adopt
the similar setting in their papers. Our proposed algorithm EGPM outperforms
the other baseline algorithms significantly. For example, EGPM has an improve-
ment 7.6% over SVM, 11.2% over KNN, 4.7% over LNP for detecting Glaucoma.
For PM, EGPM has an improvement 3.6% over SVM, 6.7% over KNN, and 2.5%
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Table 5. The AUCs of different algorithms under three setting of features on SiMES
dataset for PM diagnosis. The results of AUC marked in boldface are significantly
better than others.

Methods KNN SVM LNP Our Proposed

Global Features 81.5 % 84.1% 85.6 % 87.3%

Grid based Features 79.3 % 82.3 % 83.7% 85.1%

Bag of Words 83.8 % 86.5% 87.9% 89.5%

Combined Features 86.5 % 89.1% 90.1 % 92.3%

over LNP. For AMD, EGPM has an improvement 5.7% over SVM, 8.8% over
KNN, and 3.5% over LNP. Comparing with the state-of-the-art algorithms of
individual disease detection, the proposed EGPM outperforms SGL, SPM, and
SAMD by achieving the AUC 82.5%, 92.3%, 79.3%, respectively. The improve-
ment is supposed to stem from the fact that our proposed algorithm encodes
the disease label information of each image as a unit confidence vector, which
imposes extra inter-label constraints. In contrast, other methods consider each
disease label independently.

The comparison results of the detecting performance under four feature set-
ting are listed in Table 3, Table 4, and Table 5. Since the state-of-the-art algo-
rithms (SGL, SPM, SAMD) of the individual ocular disease detection are based
on their own special visual features and retinal structures, the AUC results are
not given in Table 3, Table 4, and Table 5. From Table 3, we are able to observe
that, for glaucoma detection, our proposed algorithm EGPM outperforms the
three baseline algorithms based on the combined features. The AUC of the re-
ceiver operating characteristic curve in glaucoma detection is 82.5%. The similar
results are shown in Table 4 and Table 5 for AMD and PM detection respective-
ly. For AMD detection, our proposed EGPM algorithm achieves 79.3%. For PM
detection, the AUC of EGPM is 92.3%.

Recall that the proposed algorithm is a graph based probabilistic multi-label
learning algorithm, wherein pi(y) expresses the probability for the i-th image to
be associated with the y-th label, as detailed in Section 3.2. Figure 3 gives eight
sample results by our proposed EGPM algorithm. For each fundus image, we
attach the ground truth diagnosed by clinicians and the predicted labels with
probabilities by EGPM. In the real world, the number of patients usually have
AMD in association with glaucoma [8]. PM eyes are less likely to have AMD, but
more likely to have glaucoma [9]. Hence, in our experimental results, Glaucoma
and AMD are usually detected at the same time, as well as Glaucoma and
PM (as shown in the fourth sample in Figure 3). As shown in the fourth row of
Figure 3, even the quality of the fundus images is not good, our proposed EGPM
still detects the glaucoma and AMD diseases. This validates the robustness and
stability of the proposed method.
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Fig. 2. Sample results diagnosed by our proposed EGPM algorithm. The order is from
left top to right bottom. Each fundus image is attached the ground truth diagnosed
by clinicians and the predicted labels with probabilities by EGPM. GL, AMD, and
PM stand for Glaucoma, Age-related Macular Degeneration, and Pathological Myopia,
respectively.

6 Conclusion

The proposed EGPM harmoniously integrates the correlation information of
Glaucoma, PM and AMD, and exploits the problem of learning to simultane-
ously detect these three ocular diseases. Two concatenating parts are included
in EGPM: 1) k-Nearest-Neighbor (k-NN) search based graph construction ; 2)
Kullback-Leibler divergence based entropic multi-label learning. In addition, in
order to capture the characteristics of Glaucoma, PM and AMD, the extractions
of various effective low-level features are explored, including Global Features,
Grid-based Features, and Bag of Visual Words.
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